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Arrhythmia is an abnormality of the heart’s rhythm, caused by prob-
lems in the conductive system and resulting in irregular heartbeats.
There is increasing evidence that undertaking frequent endurance
sports training elevates one’s risk of arrhythmia. Arrhythmia is di-
agnosed using an electrocardiogram (ECG) but this is not typically
available to athletes while exercising. Previous research by our exter-
nal collaborator at Crickles investigates the usefulness of commonly
available heart rate data in detecting signs of arrhythmia. It is hypothe-
sised that a feature termed ‘gappiness’, defined by jumps in the heart
rate while the athlete is under exertion, may be a characteristic of ar-
rhythmia. A correlation was found between the proportion of ‘gappy’
activities and survey responses about heart rhythm problems. We de-
velop on this measure by exploring various methods to detect spikes
in heart rate data, allowing us to describe the extent of irregularity in
an activity via the rate of spikes. We first compare the performance of
these methods on simulated data, where we find that smoothing using
a moving average and setting a constant threshold on the residuals is
most effective. This method was then implemented on real data pro-
vided by Crickles from 168 athletes, where no significant correlation
was found between the spike rates and survey responses. However,
when considering only those spikes that occur above a heart rate
of 160 beats per minute (bpm) a significant correlation was found.
This supports the hypothesis that jumps at only high heart rates are
informative of arrhythmia and indicates the need for further research
into better measures to characterise features of heart rate data.
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1. Introduction

Arrhythmia is an abnormality of the heart’s rhythm, the
most common type of which is atrial fibrillation (AF) (1). A
diagnosis is confirmed by observing an episode of AF during an
electrocardiogram (ECG) (2), which can be aided by patients
wearing a portable ECG recorder (1, 3). While moderate
physical exercise is associated with a reduced risk of AF there
is some evidence that strenuous endurance exercise increases
an individual’s risk (4, 5). As such there has been an interest
in attempts to use ECGs in smart watches, worn by athletes
to record information about their exercise, to detect AF (6, 7).
As these devices with ECGs can be expensive, it could be
beneficial to instead determine if commonly available heart
rate data contains any informative signs of AF.

The Crickles project (8) was established to provide athletes
with cardiac stress analysis, calculated using data from their
Strava activities, and inform them about their training load
relative to other athletes. This data has been used by Ian
Green and Mark Dayer to investigate the possibility of using
heart rate data to detect the presence of heart rhythm problems
(9). They hypothesised that jumps at high heart rates, for
example jumping from 180 to 195 beats per minute (bpm)
then immediately dropping again, or jumps to unrealistically
high values, could be informative. As an athlete’s heart rate

monitor continuously samples current in the heart muscle it
may plausibly be affected by arrhythmia. Green et al. do
not claim that such jumps are a direct observation of an
episode of AF, nor that they are an accurate reflection of an
athlete’s heart rate, but rather that these observed jumps
are errors in the heart rate monitor. Their key hypothesis is
that the presence and/or frequency of such errors may still be
informative.

In (9) each activity is classified as ‘Regular’, ‘Unclear’,
‘Check_Strap’ or ‘Irregular’, based on two key features. The
feature of most interest is ‘gappiness’ shown in Fig.1: an ac-
tivity is gappy if it contains gaps in the range of observed
heart rate readings over a threshold. This threshold is set as
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Fig. 1. Time series showing a gappy heart rate, as the heart rate exceeds the natural
maximum (dashed line). It is hypothesised that this gap are blips in the heart rate
monitor caused by unusual electrical cardiac signals, and so a heightened frequency
of these gaps for an athlete may be associated with arrhythmia.

the maximum of the modal heart rate and lactate threshold
heart rate (LTHR) of the athlete, which serves as an indica-
tion of when the athlete’s heart rate is considered to be at
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a high range. Gappiness can be detected by marking heart
rates as either ‘visited’ or ‘unvisited’ over the course of an
activity. If there exists a visited heart rate higher than an
unvisited heart rate and the threshold then a gap is observed.
As the procedure for detecting gappiness uses the distribution
of heart rates across an entire time series it provides a simple
Boolean indicator of whether the whole activity is gappy or
not. Activities can also be gappy at the bottom end of heart
rate readings, using a mirror of the procedure above, but it
is assumed that these gaps are not indicative of arrhythmia
as the athlete is not under exertion. By design gappiness
focuses on jumps that occur at the top end of the heart rate,
potentially neglecting any informative behaviour that occurs
when the heart rate is normal or relatively low.
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Fig. 2. Time series showing a sticky heart rate, where the heart rate is held constant
at 120 bpm for a long period of time which is physiologically implausible especially
during endurance training, suggesting an error in the heart rate monitor.

For the second feature, an activity is called ‘sticky’ if the heart
rate is constant for at least 90 seconds, as seen in Fig.2. This
indicates that the monitor is not correctly sampling the heart
rate. Activities are then classified according to Table 1.

Table 1. Classification of activities

Non-sticky Sticky

Gappy

High end only Irregular

Low end only Unclear

At both ends Unclear

Non-gappy Regular

Check_Strap

Activities classified as ‘check_strap’ or ‘unclear’ were removed
from consideration. This did not pose a problem as athletes
typically recorded a large number of activities. For each athlete
the irregular ratio was defined as the percentage of remaining
activities classified as irregular.

The study in (9) aimed to investigate the relationship between
an athlete’s irregular ratio and their cardiac health. Crickles
users were invited to take part in a questionnaire, the key
question of which was

Do you have, or have you had a heart rhythm prob-
lem?

The Yes/No response to this question was used to classify
athletes into those with and without a diagnosed arrhythmia.
The Crickles dataset was restricted to those athletes with

a survey response. The dataset was restricted further by
considering only cyclists, who were assumed to use a chest
strap to monitor their heart rates. A statistically significant
correlation of 0.24 was then found between the irregular ratio
and responses to a heart health survey.

Work so far on this problem describes the jumps in time series
by labelling the entire activity ‘gappy’ or ‘non-gappy’. We aim
to expand on this by providing a more detailed characterisation
of the level of irregularity for each activity/athlete, with the
goal of strengthening the correlation previously observed. We
begin by developing ‘spike detection’ algorithms to locate
jumps throughout the heart rate data, regardless of the range
of the heart rate readings, and extract potentially important
features such as the height of spikes and the heart rate at
which they occur. We then infer the rate of spikes for each
athlete and test for a correlation against reported heart rhythm
problems.

2. Methods

We begin this section by describing a variety of methods to
detect spikes in heart rate data, including smoothing, wavelet
transforms and thresholding.

We then introduce a method for simulating heart rate data.
Creating simulated data was essential as privacy controls re-
garding data available to Crickles severely limited our own
access. For exploratory analysis we had access to a small
number of sample time series, but to utilise a larger dataset
we needed the Crickles team to run and return any results.
This restriction necessarily shaped our methodology: we first
developed various spike detection methods, tuned their param-
eters, then compared their performance on simulated data to
select a single method to apply to the real dataset. We outline
our methods and comparison below, then close this section by
describing the inference we perform on the detected spikes.

A. Spike detection methods. One method that could be used
to detect spikes on time series data is to first detrend the time
series (10), for example, by subtracting a smoothed version
from the original. Then, a threshold can be set on the residuals,
with times when the residuals exceed that threshold registered
as spikes. The corresponding heart rate where the spikes occur
can be found from the smoothed heart rate time series. The
height of the spike can also be calculated by subtracting the
smoothed heart rate from the original heart rate data where
spikes occurred.

A.1. Smoothing methods. In order to smooth the heart rate time
series, one method was to utilize a simple moving average.
Letting {X(t) : t = 1, . . . , T} be the heart rate time series,
define the smoothed time series, X(t) by

X(t) := 1
w

i∑
k=−i

X(t+ k) [1]

where w = 2i+ 1 is called the width.

A more complex smoothing method finds a sparse represen-
tation in a discrete wavelet basis - a widely used technique
for signal denoising (11, 12). The mathematical theory of
this method is explained in section S1.C of the supplementary
material.
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A.2. Thresholding methods. A simple thresholding method is to
set a constant threshold by evaluating the 95th percentile of
the residuals, multiplied by a constant.

Another method is to have an adaptive threshold (13) on the
residuals based on a rolling window, instead of evaluating a
constant threshold from the entire set of residuals. For each
time t in the residual series, a window of width w centred on
time t is considered and the threshold, Thresh(t) is calculated
by:

Thresh(t) = offset + µ(t) + constant ∗ σ(t) [2]

where µ(t) and σ(t) is the mean and standard deviation of
residuals within the window respectively. The offset was intro-
duced and set to a low value of 0.01 to prevent any detection
of spikes when there are regions of missing data in the heart
rate time series. Indeed, the standard deviation σ(t) should be
zero in these regions, but fluctuations due to finite numerical
precision meant that the residuals here are not exactly zero.

A.3. Continuous wavelet transform. The methods discussed so far
detect spikes by thresholding the residuals after detrending
the time series. An alternative approach instead uses the
continuous wavelet transform (CWT). Loosely speaking, the
CWT measures the similarity of the signal to the shape of a
given ‘mother wavelet’ at different timescales and locations. By
thresholding these coefficients for a suitable, small timescale,
we can identify locations in the time series which resemble
spikes. Again, this threshold can be either constant or adaptive.
The CWT is closely related to the discrete wavelet transform
mentioned earlier and both transforms, along with the spike
detection methods derived from them, are described in more
detail in section S1 of the supplementary material.

B. Simulation algorithm. Our simulation model is inspired by
existing models for electricity prices, which are known to spike
in a similar fashion (14, 15). These models separate the process
into multiple components, each designed to capture a different
feature of the data, one of which is sudden short spikes. Taking
a similar approach we consider three components which are
simulated in order:

1. The base heart rate (Xt)

2. An additional noise process (Yt)

3. A spike process (Zt)

All variables are one-dimensional and in units of bpm.

The base heart rate provides the general shape of the time
series and is where different activities, such as interval training,
can be included. Xt represents the ‘true’ heart rate of the
athlete. We model Xt using an SDE of the form

dXt = −V ′(Xt, t) dt + σ dW
(1)
t [3]

where V (x, t) is an asymmetric potential surface, σ represents
the amount of noise and dW (1)

t is a standard Brownian motion.
V may be time dependent, allowing us to simulate complex
activities such as modelling interval training by moving the
minimum of V , whereas σ is constant. V is chosen to be
asymmetric as athletes’ heart rates often remain close to, but
do not regularly exceed, a natural ceiling rate during exercise.

However, excursions into lower heart rates, in the region 100-
160bpm) were not uncommon in our example data and so
are penalised less by the asymmetric potential surface. The
precise shape of V and values of σ are fit by eye to available
data as their purpose is to provide a reasonable background
process against which we can try to detect spikes. A plot of
V can be found in Fig.S2.1.

The additional noise process allows us to incorporate het-
eroscedasticity, as step changes in the level of noise are some-
times observed during an activity. An example of this in real
data is shown in Fig.3. In some cases, it is the first ten minutes
or so of the activity which is noisier than the rest. A possible
explanation (9) of this phenomenon is that at the start of an
activity a lack of sweat build-up leads to contact failures in
heart rate monitors and hence noisy data. As this noise is
considered to be an effect of the monitor, not increased volatil-
ity in the athlete’s heart rate, we include this as a separate
independent process.
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Fig. 3. Time series showing heteroscedasticity in a real heart rate sample. Both the
recorded heart rate (top) and residuals after removing a moving average with a ten
second window (bottom) are shown. It can clearly be seen that there is a significant
increase in point variance after about 25 minutes.

The additional noise process is a simple mean-reverting Orn-
stein–Uhlenbeck process (16), modelled using the SDE

dYt = −α(t)Yt + β(t) dW (2)
t [4]

where α > 0 describes the rate at which the process reverts
to its mean at 0, β is a diffusion coefficient and dW

(2)
t is a

standard Brownian motion, independent of dW (1)
t . α and β

are time-varying but do not depend on the state of the process,
and are chosen to create additional noise at the start of the
activity.

Finally, the spike process, Zt, is simulated last. As the high
heart rates observed during spikes are not considered to be a
true reflection of the individual’s heart rate (9) it is reasonable
to consider them as a separate process. Since arrhythmia-
related spikes are also considered to be more likely when the
heart rate is high and the heart is under strain (9) Zt will
depend upon Xt.

The spike process is given by the increments of a non-
homogeneous jump process Jt. Let r : R → R be a function
that describes the rate of spikes as a function of the heart rate.
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This function is then used to calculate the Poisson intensity

λ(t) = r(Xt) [5]

which is used to simulate a non-homogeneous Poisson process
Pt that determines the timing of spikes. The sizes of spikes
are then drawn from a log-normal distribution to give the
jump process Jt. The increments of this jump process give
the spikes Yt, hence Yt is zero except when it is positive at the
moment of a spike.

The final output of the simulations is the synthetic heart rate
(Ht) which is found by smoothing Xt+Yt+Zt using a moving
average, then rounding the result to the nearest integer. The
simulation method was examined by Crickles and found to
produce realistic heart rate time series.

We test the spike detection methods described on simulated
data with various features including: interval training, step
changes in the level of activity and heteroscedasticity, as well
as simple situations with a constant level of activity and noise.
Example simulated time series can be found in S2. For each
time series the simulation algorithm also outputs a list of
spikes containing the time and height of the spikes, as well as
the underlying heart rate at the time the spike occurred. We
compare this against the spikes detected by each method.

C. Comparison metrics. To compare the performance on sim-
ulated data of the various spike detection methods described
we consider two error metrics. Both use a list of true spikes
taken from the simulated data and a list of detected spikes
outputted by the chosen spike detection method.

For the first error metric we set a strict time-window of 5 sec-
onds and scan through the detected spikes. For each detected
spike we count it as a ‘correct spike’ if it can be paired with
a true spike within the time-window. If so, both spikes are
removed from their respective lists. After scanning through
the detected spikes we calculate the precision and recall

precision = # correct spikes
# detected spikes

recall = # correct spikes
# true spikes

and from this the F1 score for each activity

F1 score = 2
precision−1 + recall−1

which is then averaged over all simulated activities. The F1
score is the harmonic mean of the recall and precision and is a
well-established performance metric (17–19). The score takes
values between 0 (worst score) and 1 (best score).

The second error metric, which we call ‘spike density error’
involves transforming the locations of spikes from individual
points to a distribution of possible points. The motivation for
this is that, although spikes peak at a single point, they do
have some width, partially due to the smoothing done in real
and simulated heart rate time series. For this reason there is
not a single time at which the whole spike event occurs, so it
seems reasonable to allow the true and detected spike times
to be represented by a distribution rather than a point. This
metric also allows us to incorporate the height of a spike.

We define a kernel density f : R → R, chosen here to be a
Gaussian distribution centered at 0 with standard deviation
5 (to correspond to the earlier strict threshold). This kernel
density will be translated and scaled to replace the single
point value for each spike. Any alternative kernel is acceptable
provided it satisfies the following conditions:

1. f is positive and symmetric.

2. f achieves its global maximum at 0.

3. f is integrable and integrates to 1.

Denote by fs(t) the translated and re-normalised function

fs(t) = f(t− s)∫ T
0 f(τ − s) dτ

[6]

where T is the length of the time series.

Given n spikes occurring at times 0 ≤ s1 < · · · < sn ≤ T
with corresponding heights h1, . . . , hn, define the spike density
ρ : [0, T ] → R+ by

ρ(t) =
n∑
i=1

hi fsi (t) [7]

Given lists of real and detected spike times, denote the respec-
tive densities by ρr and ρd. The spike density error is given
by

ϵ = 1
T

∫ T

0

∣∣ρr(t) − ρd(t)
∣∣ dt [8]

which provides an error in units of bmp/hour. Properties of
the spike density error are discussed in S4. We also compare
this error against that of the null spike detection model, in
which no spikes are ever detected. The error for the null model
is simply the integral of the true spike density, so we define
the error impact

ϵ∗ = 1
T

∫ T

0
ρr(t) −

∣∣ρr(t) − ρd(t)
∣∣ dt [9]

which again has units bpm/hour. If ϵ∗ is negative this means
that overall spikes have been detected erroneously and it would
have been more accurate to detect no spikes. If ϵ∗ is positive
this means the spike detection method has reduced the error
(i.e. had a positive impact) by correctly identifying spikes,
hence a large ϵ∗ is indicative of successful spike detection.

D. Results of comparison. To compare the spike detection
methods that were described in subsection 2.A, 45 training
sets of heart rate time series of different activity types (as
listed in the final paragraph of subsection 2.B) were simulated.
This training data was used to tune all the relevant parameters
in the spike detection methods, for example the width for mov-
ing average and the constant multipliers in the thresholding
algorithms. A grid search of parameters was done such that
each spike detection method maximizes the F1 score and the
error impact with the chosen parameter.

Once all the parameters were tuned such that all spike detec-
tion methods were achieving their best scores on the set of
training data, they were then applied to the test data which
contains 900 simulated heart rate time series, similarly of vari-
ous activity types. From the results of the spike detection, the
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average F1 scores and average error impact across all simulated
activities were evaluated, as shown in Fig.4. Furthermore, the
average F1 score and average error impact for each subset
of simulated activity types were also evaluated for a more
detailed analysis.
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Fig. 4. Bar charts comparing the F1 score (left) and error impact (right) when averaged
across all simulated activities. Both metrics show the methods based on moving
average (mov) and DWT smoothing with a constant threshold to be the best performing
(both highlighted in red). Of the two, the moving average method was chosen for
spike detection on empirical data because of its simplicity.

From Fig.4, both moving average and DWT smoothing meth-
ods with constant threshold were able to detect the true sim-
ulated spikes accurately regardless of activity type, showing
similar results in both performance metrics. As the moving av-
erage method was able to detect a more accurate spike height,
this resulted in a greater error impact. This is illustrated in
Fig.5, which shows a breakdown of this spike detection method
on an example simulated heart rate time series. From these
results, and because of its relative simplicity, the method with
moving average and constant threshold was chosen as the spike
detection method to be used going forward.

This spike detection method, with the same set of parameters
as used for the comparison, i.e., width w = 200 s for the
moving average smoothing and constant multiplier 2.5 for
thresholding, were then applied to the empirical data of 168
athletes provided by Crickles.

E. Inference. Once this method has been applied to the em-
pirical data it remains to characterise the frequency of spikes
for each athlete. We consider two key lines of enquiry:

1. Is there a correlation between the overall frequency of
spikes and reports of heart rhythm problems?

2. Is there a correlation between the frequency of spikes and
the heart rate at which they occur? Furthermore, is this
relationship the same for individuals with and without
heart rhythm problems?

To address the first question we calculate the rate of spike
events. We denote the total number of spikes across all an
individual’s time series by N , and the total length of time
series by T . Define the spike frequency

λ = N

T
[10]

which is in fact the maximum likelihood estimate (MLE) if
the cumulative number of spike events were a Poisson process
with constant rate λ (see S3). This value is calculated for all
individuals. As in (9) we then perform a point-biserial corre-
lation check and logistic regression to explore the association
between spike rate and heart rhythm problems.

To address our second line of enquiry, the relationship between
spike frequency and heart rate, we consider two approaches.
Firstly we consider a more detailed model of the spike fre-
quency. We again assume spikes occur at times determined
by a Poisson process, but now allow this process to be in-
homogeneous with time-dependent rate λ(t). Letting X(t)
denote a smoothed heart rate time series with spikes removed,
we assume λ(t) is a piecewise constant function of X(t). Given
these two models we consider the hypotheses:

• H0: spikes occur according to a Poisson process with
constant intensity.

• H1: spikes occur according to a Poisson process whose
intensity is a piecewise constant function of the heart rate.

We perform a likelihood ratio test to determine if the more
complex, heart rate dependent model is a significantly better
fit to the observed spike locations. The full details of this
hypothesis test are described in S3. This hypothesis test is
performed for each individual and for the athletes collectively.
If the null hypothesis were rejected this would indicate there
exists a relationship between heart rate and spike rate that
requires further investigation. It is also possible that a re-
lationship between inhomogeneity and arrhythmia may be
observed.

We also considered fitting the rate of an inhomogeneous Pois-
son process whose rate is a continuous function of time or
heart rate, but the number of spikes observed in the sample
data was too low for such a method to produce meaningful
results.

3. Results and Discussion

Spike detection and inference were performed on data from
168 athletes, all of whom had at least 100 activities of different
lengths recorded, while 45 of them reported having heart
rhythm problems in the Crickles survey. Activities shorter
than 5 minutes and those marked as ‘sticky’ were removed
from the dataset, leaving a total of approximately 125,000
activities. On average there were 814 hours of activity data
for each athlete.

A. Initial results. Fig.6 shows on the left a box plot of the
Poisson rate of spikes for each athlete, split into those athletes
with and without arrhythmia. On the right is a corresponding
box plot for the percentage of activates marked as irregular,
called the irregular ratio, which is the original measure of
gappiness in (9).

The majority of athletes have a very low rate of spikes, typically
fewer than 0.5 spikes per hour. A point-biserial correlation
check is performed to asses the correlation between Poisson
spike rate and arrhythmia. We also show results of the same
test performed on the irregular ratio.

Table 2. Results of point-biserial correlation check for Poisson spike
rate and irregular ratio against cardiac health survey.

Correlation p-value

Poisson spike rate 0.06 0.44

Irregular ratio 0.28 0.00027
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Fig. 5. Example of spike detection on simulated heart rate data with method mov_constant from Fig.4. The top plot shows the simulated time series being smoothed by moving
average (orange). The second plot shows the resulting residuals (green) and the evaluated constant threshold (dashed). The third and fourth plots are the resulting detected
spikes and true simulated spikes respectively, which shows the accuracy of this method in recovering the true spikes.
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Fig. 6. These box plots show the distribution of Poisson spike rates (a) and irregular
ratios (b) for athletes with and without arrhythmia. Some outliers for both Poisson spike
rates and irregular ratios can clearly be observed and will be analysed in subsection
3.B. A correlation with arrhythmia was found from the irregularity ratio, but not for the
Poisson spike rates.

From these values, we cannot conclude a statistically sig-
nificant correlation between the Poisson spike rate and the
reported heart rhythm problems. Conversely, the irregular
ratio does shows a significant correlation. We now address
several possible causes of this difference.

B. Analysis of outliers. In Fig.6a we observe a small number
of individuals without arrhythmia for whom the Poisson spike
rate is substantially higher than expected. For the purpose of
investigating the effect they have on the correlation, outlying

athletes can be removed from the dataset by removing those
above a threshold percentile of the data. To ensure we compare
the Poisson spike rates and irregularity ratios of the same set
of athletes we require that athletes are not outliers in either
measure. The effect on correlation and p-values of removing
outliers is shown in Fig.7.
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Fig. 7. The plots show the correlation coefficient (top) and corresponding p-values
(bottom) of Poisson spike rate (red) and irregular ratio (blue) with arrhythmia, against
the outlier threshold, where we remove datasets with either of Poisson spike rate
or irregular ratio above the threshold percentile of the data. When those above the
98th percentile are removed, the Poisson spike rate shows a significant correlation,
indicating that it is sensitive to some outliers present in the data.

The correlation between the irregularity ratio and reported
heart rhythm problems gradually weakens, with an increasing
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p-value, as more athletes are removed from the dataset. When
considering the Poisson spike rate we observe that removing a
small number of outlying athletes (those above the 98th per-
centile) strengthens the correlation and decreases the p-value,
indicating a significant result. However, removing additional
athletes then reduces the correlation and significance. This
indicates that the correlation between Poisson spike rate and
reported heart rhythm problems is highly sensitive to the
presence of these outliers.

Unfortunately, due to our limited access to the data, we were
not able to identify the cause of these outliers. It is possible
that these athletes’ activity time series contain some feature
that was not represented in our samples that caused our spike
detection method to behave unexpectedly. As the Poisson
rate is calculated using spikes across all an athletes activities,
errors arising in one activity have the capacity to corrupt the
overall rate. This sensitivity to individual activities may con-
tribute to these outlying results. By comparison the Boolean
classification of ‘irregular’ activities for the gappiness metric
in (9) limits the influence of any one activity on the athlete’s
irregular ratio, leading to greater robustness at the cost of
reduced information.

Alternatively it may be that the spike detection method has
performed as expected, but that outliers have a higher rate
of spikes due to a fault in their heart rate monitors or other
non-arrhythmia related effect. The precise mechanism by
which irregular heart rhythms translates to gappy time series
is unclear, and the spikes we observe have other possible causes.
Hence, even if the spike detection methods operate correctly,
the inferred rate of spikes still may not correlate clearly with
arrhythmia.

Finally it may possibly be the case that outlying individuals
have an un-diagnosed heart condition, meaning that the survey
results do not accurately correspond to true heart rhythm
problems. Additionally there may be other individuals who
responded as having had heart rhythm problems but who are
now receiving treatments. As the methods proposed here are
not intended as a diagnostic tool we do not speculate as to
the heart health of any of the athletes whose data we analyse.

As the cause of these outliers is unclear we would not feel
justified in excluding them from our analysis, and so recognise
that the current method of spike detection and inference does
not improve upon the original gappiness metric proposed in
(9).

C. Analysis of heart rate dependence. For the in-homogeneity
hypothesis test of spike rates for all athletes, as explained in
section 2.E, the results show that for 123 athletes out of the
168, there was significant evidence to reject the null hypothesis,
suggesting that spikes occur according to a Poisson process
with a rate which is heart rate dependent. A histogram of
the frequency of spikes against the heart rate where the spikes
occur is shown in Fig.S5.1, which shows that a large number
of spikes were detected in the range 105 − 140bpm.

From the paper (9) by Crickles, it is also hypothesised that
only features of heart rate data at high ranges above the lactate
threshold heart rate (LTHR) of the athlete are informative
of arrhythmia, since the athlete is under exertion at that
range of heart rate. Hence, to test our results against this

hypothesis, spikes below a certain heart rate threshold hthresh
are removed for all athletes. The corresponding Poisson spike
rate for each athlete is then recalculated, and similarly, the
point-biserial correlation between the new Poisson spike rate
and arrhythmia is evaluated. The plot in Fig.8 shows the
correlation coefficients and p-values against increasing heart
rate threshold, hthresh.

In the initial section of the plot in the range hthresh ≤ 75, both
the correlation coefficient and p-value stay relatively constant
at the value prior to filtering out any spikes. This is because
there are only a very small number of spikes present in the
low range of the heart rate, so the correlation tests produce a
similar result to that found in subsection 3.A.
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Fig. 8. Correlation with arrhythmia against heart rate threshold, where the top figure
shows the correlation coefficient and bottom figure are the corresponding p-values.
The horizontal blue and red lines display the results of irregularity ratio from Crickles
and Poisson spike rate without filtering out any spikes respectively. The purple
curve shows the Poisson spike rate with spikes below the heart rate threshold being
removed.

Within the heart rate threshold range 75 ≤ hthresh ≤ 130,
there is a decrease in correlation between Poisson spike rate
and arrhythmia, which is caused by it being a gray area where
this heart rate range is considered as high for some athletes
and low for others. From the histogram in Fig.S5.1, the modal
value of heart rate where spikes occur also falls in this range.
Therefore, past this range, a large number of spikes would
be removed relatively randomly from all athletes, so affecting
the significance of the spikes detected and thus reducing the
correlation with arrhythmia.

Within the range 130 ≤ hthresh ≤ 175, however, a steady
increase in correlation coefficient and decrease in p-value is
observed. The correlation of spike rate with arrhythmia peaks
at hthresh = 175. In this range, the heart rate is likely con-
sidered to be high for all athletes. Since now only spikes at
high heart rates remain, the increase in correlation justifies
that only spikes at a higher heart rate range are significantly
indicative of reports of heart rhythm problems. This not only
agrees with the hypothesis as mentioned above, but also fits
with the medical understanding of arrhythmia that athletes
under exertion may induce irregularity patterns in heart rate
(20). The correlation value with arrhythmia using Poisson
spike rate never achieves a value as high as using Crickles’
irregularity ratio, since only a global heart rate spike threshold
was used here, instead of an individualised LTHR for each
athlete, as was done in Crickles’ research. Hence, further re-
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search to obtain LTHR data and implement this into the spike
detection methods would likely further improve the correlation
of Poisson spike rates with arrhythmia.

Finally when hthresh ≥ 175, both correlation and p-values
decrease as at this point most spikes have been removed. More
heart rate data with spikes at such high heart rates would be
needed to obtain a better correlation and draw a meaningful
conclusion.

4. Further Work

The first step of further work on this project would be as
mentioned in the second last paragraph of section C, where
the LTHR for each athlete should be incorporated in the spike
detection methods as a lower bound so that only spikes at
heart rate ranges considered high for each individual athlete
are considered. This would require access to further historical
activity data from the athlete for an accurate estimate of the
athlete’s LTHR, which will likely be a challenge due to data
privacy.

With the current spike detection method, it is also observed
that a large proportion of spikes were detected from the first
10 minutes of the activity data, shown in the histogram in
Fig.S6.1. This may be largely caused by the defects of heart
rate monitors that struggle to obtain accurate readings when
athletes start their activities. For example, chest straps are
prone to contact failures with the skin before the build up of
sweat, resulting in inaccurate and noisy heart rate readings.
More analysis will need to be done on coping with noisy data
from the heart rate monitor such as this, so that the spike
detection methods can properly distinguish noise caused by
external effects from spikes caused by heart rhythm irregulari-
ties. To cope with initial noisy readings, one method will be
to discard readings from the first 5 to 10 minutes of activity
before implementing the spike detection methods.

Instead of explicitly detecting spikes in heart rate data, further
work can also be done to characterise other features of heart
rate time series, and their correlation with arrhythmia. It is
observed from empirical data that the volatility of heart rate
varies not only between separate activities but also within
heart rate data recorded by an athlete from a single activity.
Hence, analysing and measuring the volatility of heart rate
data could also potentially be informative of heart rhythm
problems.

In addition to heart rate measurements, sport devices often
record other data such as the velocity, distance, elevation,
power output by the athlete, etc., during the activity. Analysis
on this additional data could perhaps be used to filter out
any characteristics in the heart rate data such as change in
volatility or drastic trends in heart rate that are caused by a
sudden exertion from the athlete while exercising.

In conclusion, other than exploring different data driven meth-
ods, there is scope for lots of further work to be done in
improving the current spike detection method and modelling
other features of the of heart rate time series, in order to
obtain stronger correlations of these metrics with arrhythmia.
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Supplementary Information
S1. Spike detection methods

A. An introduction to wavelets. What follows is a very fast
paced overview of the relevant theory of wavelets for this
project. For a friendlier introduction the reader is referred to
the excellent texts by Daubechies (21) and Kaiser (22). In
particular, Daubechies’ book formed the basis for this section.

The Fourier transform gives a decomposition of a signal into
a frequency spectrum. Low frequency components describe
the slower changing aspects of the signal such as the overall
trend, while features like spikes require the higher frequency
components. However, representation of a spike in Fourier
space requires contributions from all frequencies. Indeed,
the most extreme case of a spike is the Dirac delta function
centered at a point c ∈ R, δc(t), whose Fourier transform is
δ̂c(ω) = e−iωc. This makes it hard to use the Fourier transform
to isolate spikes within a signal and it is therefore desirable to
look for a decomposition of the signal which localises ‘content’
in both frequency and time.

Wavelet theory (12, 21) covers many related transforms to per-
form this time-frequency decomposition, the most important
being the continuous and discrete wavelet transforms. They
each begin with a mother wavelet, ψ ∈ L2(R), such as the
one in Fig.S1.1, which defines a short-lived oscillation. By
translating and rescaling ψ, we can generate a family of (child)
wavelets

ψa,b(t) = |a|−1/2ψ
(
t− b

a

)
. [11]

Here a ∈ R \ {0} is a scaling parameter and b ∈ R is a
translation parameter. By rescaling by a factor of |a|−1/2 we
preserve the L2 norm of the wavelet, ∥ψa,b∥ = ∥ψ∥.

Time

Real
Imaginary

Fig. S1.1. An example of a mother wavelet: the complex Morlet wavelet with bandwidth

2 s2 and central frequency 1 Hz, ψ(t) = 1√
2π
e−t2/2e2πit.

We must place some restrictions on what is an acceptable
mother wavelet. It is sufficient to require that ψ ∈ L1(R) ∩
L2(R) with∫

R
ψ(t) dt = 0, ∥ψ∥ =

∫
R

|ψ(t)|2 dt = 1. [12]

The requirement that ψ integrates to zero will allow us to in-
vert the wavelet transforms and such a mother wavelet is called
admissible. The condition on the L2-norm is just a normalisa-
tion convention. It is possible to weaken these restrictions so
that ψ need not be in L1(R) and need not integrate to 0 but
is still admissible, however, this is of little practical use.

The continuous wavelet transform (CWT) of a signal f(t) is

(Wf)(a, b) = ⟨f, ψa,b⟩

= |a|−1/2
∫
R
f(t)ψ

(
t− b

a

)
dt.

[13]

Like the Fourier transform, it is defined using an inner product.
However, unlike with the Fourier transform, the CWT includes
a lot of redundancy. This means that there is no single formula
for inverting the CWT. However, a canonical formula known
as the resolution of identity does exist

f(t) = C−1
ψ

∫ ∞

−∞

∫ ∞

−∞
(Wf)(a, b)ψa,b(t) 1

a2 da db [14]

where
Cψ = 2π

∫ ∞

−∞
|ψ̂(ξ)|2 1

|ξ|dξ.

Here ψ̂ denotes the Fourier transform of the mother wavelet.
It can be shown that for an admissible wavelet (Eq. (12)), the
integral defining the constant Cψ exists and is finite.

In the discrete wavelet transform (DWT), the scaling and
translation parameters only take discrete values

am = 2m, bn = n2m [15]

giving child wavelets

ψm,n(t) = 1√
2m

ψ
(
t

2m − n
)
. [16]

Therefore the DWT can be viewed as a discrete sampling of
the CWT, as illustrated in Fig.S1.2. At higher frequencies,
the DWT has higher temporal resolution to capture the faster
changes but lower frequency resolution since this is more
important for lower frequency components. Note that at this
point, we are still in the regime where the original signal is
sampled continuously.

b

1/a

Fig. S1.2. The discrete wavelet transform can be viewed as a discrete sampling of the
continuous wavelet transform. The dots in this figure show these discrete locations.
Note that the y-axis shows 1/a which is proportional to the central frequency of the
wavelet. The x-axis plots the translation parameter, b.

For particular choices of the mother wavelet, ψ, the wavelets
ψm,n form a basis for L2(R). For more specific choices, this
basis is orthonormal and the coefficients in the decomposition
can be calculated easily by taking the inner product with the
respective wavelets

f(t) =
∑
m,n

⟨f, ψm,n⟩ψm,n. [17]
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If the basis is not orthonormal then we can still calculate the
coefficients using the Riesz representors, ψ̃m,n, of the dual basis.
These are functions satisfying ⟨ψm,n, ψ̃m′,n′ ⟩ = δm,m′δn,n′ ,
where δj,k is the Kronecker delta. The coefficients of f in the
wavelet basis are given by taking the inner product with this
dual basis,

f(t) =
∑
m,n

⟨f, ψ̃m,n⟩ψm,n. [18]

The choice of discretisation made in Eq. (15) is motivated
by multiresolution analysis which will be introduced shortly,
however other discretisations are possible. The subject result-
ing from a combination of mother wavelet and discretisation
which doesn’t yield a basis is that of redundant frames and is
beyond the scope of this introduction.

For a practical understanding of wavelets, it is necessary to
introduce multiresolution analysis. This is by far the most
common implementation for the DWT and, for example, is
used by pywavelets (23), the library used for this project.
Aside from computational efficiency, one main reason for this
is that it provides a method to construct wavelets which form
an orthonormal basis.

Rather than explicitly defining the mother wavelet, ψ, mul-
tiresolution analysis instead begins with a nested sequence of
(closed) approximation spaces

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · ·

satisfying ⋃
m∈Z

Vm = L2(R),
⋂
m∈Z

Vm = {0}.

We further require that

∀n ∈ Z, f ∈ V0 ⇔ t 7→ f(t− n) ∈ V0,

∀m ∈ Z, f ∈ Vm ⇔ t 7→ f(2mt) ∈ V0.

The latter condition here is what gives multiresolution analysis
its name. Finally, we require the existence of a function ϕ ∈ V0
such that {ϕ0,n : n ∈ Z} form an orthonormal basis for V0,
where for all m,n ∈ Z, ϕm,n = 2−m/2ϕ(2−mt− n). This ϕ is
called the scaling function for the multiresolution analysis.

With this construction, for f ∈ L2(R) we can build successive
approximations fm ∈ Vm by projecting orthogonally onto
Vm. By construction, we have fm → f pointwise as m → −∞.
Furthermore, it is clear that the scaling function, ϕ, is sufficient
to reconstruct the full multiresolution analysis set-up.

We are now in a position to construct an orthonormal wavelet
basis for L2(R). For each m ∈ Z, let Wm be the orthogonal
complement of Vm in Vm−1, so that

Vm−1 = Vm ⊕Wm, and Wm ⊥ Wm′ whenever m ̸= m′.

Define
ψ =

∑
n∈Z

gnϕ−1,n ∈ W0 ⊂ V−1 [19]

where for each n ∈ Z, gn = (−1)n⟨ϕ, ϕ−1,−n+1⟩. It is proved
in (21, Theorem 5.1.1) that ψ is a mother wavelet generating
an orthonormal basis of wavelets {ψm,n : m,n ∈ Z} for L2(R)
where each ψm,n(t) = 2−m/2ψ(2−mt − n). Further, for each

m ∈ Z, {ψm,n : n ∈ Z} are an orthonormal basis for the
subspace Wm. Note however, that this choice of ψ is not
unique.

We now describe an efficient algorithm for calculating these
coefficients, which is an example of something known as a sub-
band filtering scheme. Suppose that we have a fine scale
approximation f ∈ Vm of some function f∗ given by or-
thogonal projection, and that we have calculated the coef-
ficients (⟨f, ϕm,n⟩ : n ∈ Z) in the basis generated by the
scaling function. By rescaling our scaling function, we may
assume without loss of generality that m = 0. Thus we
have f =

∑
n∈Z⟨f, ϕ0,n⟩ϕ0,n ∈ V0. It is our aim to replace

this representation of f with one using the natural basis for
V0 = VM ⊕WM ⊕ · · · ⊕W1 for a given integer M ≥ 1 called
the level of the decomposition,

f =
∑
n∈Z

aM,nϕM,n +
M∑
m=1

∑
n∈Z

dm,nψm,n. [20]

The coefficients aM,n on the scaling function part of the basis
will be called the approximation coefficients, while the coeffi-
cients dm,n on the wavelet part of the basis will be called the
detail coefficients.

We have already defined coefficients gn and can define coeffi-
cients hn such that

gn = ⟨ψ, ϕ−1,n⟩, hn = ⟨ϕ, ϕ−1,n⟩. [21]

It is shown in (21, section 5.6) that for f ∈ L2(R) and for all
m,n ∈ Z,

dm,n = ⟨f, ψm,n⟩ =
∑
k∈Z

gk−2n⟨f, ϕm−1,k⟩, [22a]

am,n = ⟨f, ϕm,n⟩ =
∑
k∈Z

hk−2n⟨f, ϕm−1,k⟩. [22b]

This gives us a recursive algorithm for computing the approx-
imation and detail coefficients of f up to any level M ≥ 0,
beginning with the inner products we have already computed
{⟨f, ϕ0,n⟩ : n ∈ Z}. Indeed, using Eq. (22) we can generate
the coefficients for level m+ 1 by convolving the approxima-
tion coefficients for level m with the respective filters (g−n)
and (h−n) and discarding the odd terms in the result. This
subsampling of the coefficients is referred to as decimation.
The pair of filters (g−n) and (h−n) are known in the signal
processing literature as a filter bank.

Of course, in practice we do not have a continuously sampled
signal. Instead, we assume sampling at regular intervals. This
actually works to our advantage. Firstly, we can perform all
the convolutions very efficiently using a fast Fourier transform.
Secondly, we do not need to further approximate f at the
start of the multiresolution analysis. Rather, we can exactly
compute the first set of approximation coefficients a0,k =
⟨f, ϕ0,k⟩ for k ∈ Z using a convolution. In this setting, the
original sampling of f can be exactly recovered no matter
what level M of decomposition is used. However, length of
the time series limits how large we can make M . Indeed, at
each step the coefficients are decimated by a factor of two and
this cannot be continued forever.

More generally, when we have a discretely sampled signal we
must be careful not to trust wavelet coefficients corresponding
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Fig. S1.3. An example of a multiresolution decomposition using DWT. Figure (a) shows the original, simulated time series; figure(b) shows the fifth order symlet wavelet
implicitly defined by the multiresolution analysis and figure (c) shows the detail and approximation coefficients for the first eight decomposition levels. The decomposition was
performed after extending the signal symmetrically at both ends to reduce end effects in the coefficients. In figure (c), the coefficients (left) are decimated at each level so that
each successive level has half as many coefficients. Their amplitude grows with the level of the decomposition because the wavelet basis is scaled down by a factor of

√
2 at

each level. The reconstructions (right) show the contribution of each level to the original time series and summing these will recover the original time series.
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to frequencies higher than the Nyquist frequency. This is
especially important for the CWT, where the algorithm does
not naturally prevent us from going beyond this. Unlike in
Fourier analysis however, this is just a rule of thumb, since
the concept of a single frequency is stronger for some families
of mother wavelet than for others.

It is also common in a practical setting to extend the signal in
some way to avoid end effects. By default we could just inter-
pret the signal as zero outside the sampled interval. However,
by extending it symmetrically, we can reduce end effects in
the coefficients for each level.

Figure S1.3 exhibits the decomposition of a simulated heart
rate using an orthogonal wavelet called the ‘symlet’ of order 5.

Finally, we note that we can relax the condition on the basis
{ϕ−1,n : n ∈ Z} being orthonormal (12, section 7.4). If instead
they simply form a Riesz basis for V0 then the wavelet basis
we obtain for L2(R) is not orthonormal, but coefficients in this
basis can be calculated using the dual basis, as before. Such
wavelet bases are often called biorthogonal. The filter banks
for the corresponding multiresolution analysis contain four
filters: one pair for analysis (deconstruction) and a second
pair for synthesis (reconstruction).

B. Spike detection using the continuous wavelet transform.
We can use the continuous wavelet transform to perform spike
detection on our heart rate time series. As can be seen in
figure S1.4, spikes manifest as ridges into the smaller scales
(higher frequencies). Choosing an appropriate scale, we ob-
tain a function of the translation parameter alone which we
can threshold to classify spikes. As with the methods which
threshold residuals of the heart rate time series, we can use
either a constant threshold or an adaptive threshold here.

The choice of wavelet is important for performing spike de-
tection using the CWT. A real-valued wavelet will give an
oscillating pattern for each spike, making it difficult to know
how many spikes there are and where they are located. There-
fore, in this report we use a complex wavelet from the family
of complex Morlet (or Gabor) wavelets. These have form

ψ(t) = 1√
bπ
e−t2/be2πict [23]

where the bandwidth, b, and central frequency, c, are parame-
ters. An example is shown in figure S1.1. In this project, we
used values of b = 1 s2 and c = 1 Hz. The benefit of using a
complex wavelet is that instead of oscillating either side of
zero, the wavelet coefficients instead orbit zero in the complex
plane. Therefore, taking the absolute value of the coefficients
yields a single smooth hump for each spike.

After thresholding the CWT coefficients, we are left with
several contiguous regions in which a spike occurs. We assign
a spike to each of these regions by taking the midpoint.

C. Spike detection using the discrete wavelet transform. In
the main text we described our principal method of spike
detection, which proceeded by

1. smoothing the original signal,

2. subtracting the smoothed signal from the original,
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Fig. S1.4. Example of spike detection with a continuous wavelet transform. First the
simulated heart rate in the top plot is passed through a continuous wavelet transform
using a complex Morlet wavelet with bandwidth 2 s2 and central frequency 1 Hz (see
Fig.S1.1). Its absolute values are shown in the second plot. An adaptive threshold is
then used on the CWT at scale 20 s (0.05 Hz), shown in the third plot. The bottom
two plots show that most of the simulated spikes were detected in this example,
although three were missed. Furthermore, an additional spike was detected at the
beginning of the time series, although this was assigned a very small height so will
not greatly affect the error impact.

3. using a threshold (constant or adaptive) to identify spikes
in the residuals.

The discrete wavelet transform provides an alternative smooth-
ing method for this process.

In signal denoising (12, chapter 11), we attempt to find a
sparse representation for our signal. As we have already seen,
using multiresolution analysis we can obtain a representation
using a set of approximation and detail coefficients. As is
visible in figure S1.3c, not all of these detail coefficients are
significant, and many could reasonably be regarded as noise.
By shrinking the smaller coefficients to zero, we can obtain a
sparse approximation to the original time series.

There are a few choices for the type of thresholding used to
obtain the sparse representation. The most popular are the
hard threshold, Tλ(x), and the soft threshold, Sλ(x), since they
are most amenable to statistical risk analysis. However, in this
project we used the non-negative garotte (24), Gλ(x), which
has desirable features from both. The three methods are given
by

Tλ(x) =
{
x if |x| ≥ λ,

0 if |x| < λ;
[24a]
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Sλ(x) =


x− λ if x ≥ λ,

x+ λ if x ≤ −λ,
0 if − λ < x < λ;

[24b]

Gλ(x) =
{
x− λ2/x if |x| ≥ λ,

0 if |x| < λ.
[24c]

D. Handling missing data. One problem encountered when
implementing the spike detection method on large sets of
heart rate data provided by Crickles was that some recorded
time series have portions of missing data, ranging between
minutes to hours within a single recorded activity, resulting
in unrealistic results, such as detecting an implausibly large
amount of spikes.

To handle these issues, dummy heart rate readings were filled
into the regions with missing data by linearly interpolating
between the two points where the heart rate was last and
next recorded, so that there are now heart rate readings every
second in the time series. This was done before the heart
rate time series was smoothed with a moving average. After
this interpolated time series was smoothed, the regions where
heart rate readings were added in for interpolation were re-
moved so that the final smoothed version was aligned to the
original heart rate data. The residuals were then obtained
and a threshold was set on the residuals to detect spikes as
explained before. This method was used instead of simply re-
moving the empty regions from the data set as it ensured that
sections of recorded heart rate separated by missing regions
were unrelated, and not treated as one continuous activity.

S2. Example simulated time series

We show here the potential surface used to simulate the base
heart rate in Eqn.3. Following this we give two examples of
simulated timeseries.
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Fig. S2.1. Example of a fixed potential surface as a function of heart rate. The
asymmetry in the potential surface ensures that the heart rate does not frequently
exceed a natural maximum, while allowing excursions to lower heart rates.
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(a) Random activity pattern
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Fig. S2.2. Example simulated time series with infrequent spikes. In (a) a constant
potential surface is used, with additional noise during the first 10 minutes. In (b)
the minimum of the potential surface is used to generate an interval training pattern.
Additional noise is added in every other 10 minute section, beginning with the first 10
minutes.

S3. Poisson inference

We describe here the likelihood ratio test used to consider the
following hypotheses:

• H0: spikes occur according to a Poisson process with
constant intensity.

• H1 spikes occur according to a Poisson process whose
intensity is a piecewise constant function of the heart
rate.

We begin by calculating the MLE under H0. Denote the total
number of spikes across all an individual’s time series by N ,
and the total length of the time series by T . The log-likelihood
function under H0 is

ℓ0(λ0) = N log(λ0) − λ0 T [25]

which is maximised by

λ̂0 = N

T
[26]

assuming of course that T > 0.

We now consider the model under the alternative hypothesis.
Denoted by X(t) a smoothed heart rate time series with spikes
removed. Divide a range of possible heart rates into k inter-
vals [X0, X1), [X1, X2), . . . , [Xk−1, Xk] with X0 < X1, . . . , Xk.
Define Ni to be the number of spike events that are detected
across the time series while Xt ∈ [Xi−1, Xi). Additionally
define Ti to be the amount of time for which Xt ∈ [Xi−1, Xi).
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Formally

Ni =
N∑
j=1

1{Xt ∈ [Xi−1, Xi)} [27]

Ti =
∫ T

0
1{Xt ∈ [Xi−1, Xi)} dt [28]

The log-likelihood function is then

ℓ(λ1, . . . , λk) =
k∑
i=1

Ni log(Ti) − Tiλi [29]

which can be maximised by maximising each component of
the sum. This gives the MLE

(λ̂1, . . . , λ̂k) =
(
N1

T1
, . . . ,

Nk
Tk

)
[30]

As the case of a homogeneous Poisson process is a restriction
of this more complex model, the more complex model will
always provide a ‘better’ fit to the data. We wish to test if
there is a significant relationship between the intensity of the
Poisson process and the heart rate by determining if this more
complex models provides a statistically significantly better fit.

Remark. In theory an arbitrary number of intervals could be
included at physically unrealistic heart rates that would never
be attained. To therefore avoid increasing k unnecessarily and
encountering issues in the definition of MLEs we assume that
all Ti > 0 and discount/merge any intervals for which this
condition fails.

The test statistic is given by

D = 2
[
ℓ(λ̂) − ℓ0(λ̂0)

]
= 2

[ k∑
i=1

(
Ni log

(
Ni
Ti

)
− 1

)
−N

(
log

(
N

T

)
− 1

)]
This is compared against a chi-squared distribution with k− 1
degrees of freedom to test for significance.

S4. Spike density error

Some basic properties of the spike density error:

• As it is the integral of a sum of non-negative functions it
is always non-negative.

• As there is no theoretical limit on the size or number of
spikes the error is unbounded.

• Errors increase if relatively larger spikes are missed or
erroneously detected.

We now present a proposition that demonstrates the relation-
ship between accuracy and error behaves as expected.

Proposition 1. Consider a situation in which there is only
one true spike and one detected spike of equal size (assumed
to be 1 for simplicity) with the detected spike a distance h
from the true spike. Let s be the time of the true spike and
s+h the time of the detected spike. Assume the density kernel
f has finite support and that the location of the spikes are
sufficiently far from the beginning or end of the time series
that the supports of fs and fs+h lie entirely within [0, T ]. In

this situation the spike density error decreases monotonically
as h decreases and is given by

ϵ(h) = 2
T

h
2∫

− h
2

f(t) dt = 4
T

h
2∫

0

f(t) dt [31]

Proof. Assume h > 0. Recall the definition of the shifted and
scaled density kernel (Eqn.6)

fs(t) = f(t− s)∫ T
0 f(τ − s) dτ

Using assumptions about the spikes and density kernel this
reduces to

fs(t) = f(t− s)

Then define

g(t) = fs(t) − fs+h(t)
= fs(t) − fs(t− h)

As the density kernel f is increasing below 0,

fs(t) ≥ fs(t− h) ∀ t < s

and so
g(t) ≥ 0 ∀ t < s.

Similarly since f is decreasing above 0,

g(t) ≤ 0 ∀ t > s+ h.

In the region s < t < s + h, fs(t) is decreasing and fs+h(t)
is increasing, hence there exists a point t∗ ∈ (s, s + h) such
that g(t∗) = 0, g(t) ≥ 0 ∀ t < t∗ and g(t) ≤ 0 ∀ t > t∗. As f is
not required to be strictly increasing, such a point may not
be unique. Since

fs

(
s+ h

2

)
= fs

(
s− h

2

)
= fs+h

(
s− h

2 − h

)
= fs+h

(
s+ h

2

)
t∗ = s+ h

2 is a suitable point.

Recall the definition of the spike density error (Eqn.8)

ϵ = 1
T

∫ T

0

∣∣ρr(t) − ρd(t)
∣∣ dt

We have that

∣∣ρr(t) − ρd(t)
∣∣ =


fs(t) − fs+h(t) if t < t∗

0 if t = t∗

fs+h(t) − fs(t) if t > t∗
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hence

ϵ = 1
T

∫ T

0

∣∣ρr(t) − ρd(t)
∣∣ dt

= 1
T

∫ t∗

0
fs(t) − fs+h(t) dt+ 1

T

∫ T

t∗
fs+h(t) − fs(t) dt

= 1
T

∫ t∗

0
fs(t) dt− 1

T

∫ t∗

0
fs(t− h) dt

+ 1
T

∫ T

t∗
fs(t− h) dt− 1

T

∫ T

t∗
fs(t) dt

= 1
T

∫ t∗

0
fs(t) dt− 1

T

∫ t∗−h

0
fs(t) dt

+ 1
T

∫ T

t∗−h
fs(t) dt− 1

T

∫ T

t∗
fs(t) dt

= 2
T

∫ t∗+h

t∗−h
fs(t) dt

Using t∗ = s + h
2 then gives Eqn.31. As f ≥ 0 decreasing

h decreases the error. The same argument can be made for
h < 0 using the symmetry of f .

S5. Distribution of spike in heart rate
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Fig. S5.1. Histogram showing the distribution of heart rate where spikes were detected
in the real heart rate data from Crickles. In order to account for different numbers
of activities and spikes for different athletes, a separate histogram was generated
for each athlete, and these histograms were then averaged to give the histogram
here. The distribution shows a normal distribution-like curve, where the majority of
the spikes were detected between ranges 105 − 140 bpm.

S6. Distribution of spike times
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Fig. S6.1. Histogram showing the distribution of times at which spikes were detected
in the real heart rate data from Crickles. In order to account for different numbers of
activities and spikes for different athletes, a separate histogram was generated for
each athlete, and these histograms were then averaged to give the histogram here.
This shows that the majority of spikes were detected within the first 10 minutes of
the time series, which may be due to do the failure of sports devices to record an
accurate heart rate during the start of an activity as discussed in section 4.
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